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Dissipative particle dynamics (DPD) has been introduced as a method for simu-
lating complex fluids at hydrodynamic time scales. In this work we investigate the
possibilities to combine this DPD method with advanced Monte Carlo techniques.
We show that this combined approach results in a more efficient sampling scheme
to compute thermodynamic properties. We illustrate these advantages by comput-
ing a phase diagram of two liquids that de-mix, and the calculation of the chemical
potential of a polymer in solution. c© 1998 Academic Press
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1. INTRODUCTION

Simulating the hydrodynamics of complex fluids is very challenging because of the wide
variety of time scales in these systems. Solving them through standard molecular dynamics
(MD) is computationally very expensive, if not impossible. Therefore other methods have
been introduced, of which dissipative particle dynamics (DPD) [1] is one. The idea of this
method is to simulate hydrodynamic behavior through the motions of soft spheres (fluid
particles). It was developed as a combination of several methods; MD, Brownian dynamics,
and lattice gas simulations. The commonly used steep MD potential (Lennard–Jones type)
is replaced in DPD by a very soft repulsive potential, making larger time steps possible. The
lattice gas approach gives the distinction between a collision and propagation phase, but in
DPD the motions are not restricted to a lattice (so that the problem of Galilean invariance
does not arise). And finally a random force is introduced similar to Brownian dynamics.

Hoogerbrugge and Koelman [1] demonstrated that their original DPD scheme obeys
the Navier–Stokes equations. This was eluded even more by Espa˜nol [2]. Español and
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Warren [3] showed that with a slight modification of the original algorithm a proper thermal
equilibrium is found and a Hamiltonian can be defined. Pagonabarragaet al.[4] have shown
that it is essential to use a time-reversible scheme to solve the equations of motion, to recover
the correct dynamics regardless of the time step chosen.

So far, DPD has been used to simulate a variety of problems. For example, hard-sphere
suspensions [5], dilute polymer solutions [6], or phase separation [7]. It is interesting to
note that all these applications use the standard DPD algorithm. The fact that for the DPD
method a Hamiltonian can be defined implies that we can also us Monte Carlo techniques
for the same model as is used in a DPD simulation. In this work, we demonstrate that a
combined DPD and Monte Carlo approach can result in more efficient sampling schemes.
In particular, we illustrate the advantage of this combined approach with the computation
of a phase diagram and the free energy of a polymer in solution.

2. DISSIPATIVE PARTICLE DYNAMICS

Dissipative particle dynamics is a simulation technique for simulating complex fluids at
hydrodynamic time scales. The DPD scheme consists of the calculation of the position and
impulses of interacting (fluid) particles over time. The time evolution of these positions
(r i (t)) and impulses(pi (t)) (for simplicity we take the masses of all particles 1) is given by

dr i

dt
= vi (t),

dvi

dt
= f i (t). (1)

The force acting on the particles is a combination of three parts:

f i (t) =
∑
j 6=i

(
FC

i j + FD
i j + FR

i j

)
. (2)

The first part of the force is the conservative part

FC
i j =

{
ai j
(
1 − ri j

rc

)
r̂ i j , (ri j < rc),

0, (ri j ≥ rc),
(3)

whereai j is the maximum repulsion between particlei and j , r i j = r i − r j , ri j = |r i j |,
r̂ i j = r i j /|r i j |, andrc is the cutoff radius. The second and third forces are the dissipative
force and the random force:

FD
i j = −γωD(ri j )(r̂ i j · vi j )r̂ i j ,

(4)
FR

i j = σωR(ri j )θi j r̂ i j ,

in whichvi j = vi − v j , ω(ri j ) is a weight function which tends to zero forr = rc andθi j is
a random number with zero mean and unit variance.

Español and Warren [3] showed that the weight functions and the constants in these forces
can be chosen arbitrarily, but they should obey[

ωR(ri j )
]2 = ωD(ri j ),

(5)
σ 2 = 2kBTγ,
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with kB the Boltzmann constant. If this condition is met a Hamiltonian exists which is given
by

H(r, p) =
∑

i

p2
i

2mi
+ UC(r ), (6)

where UC(r ) is the potential function that gives rise to the conservative forcesFC (see
Eq. (3)).

3. MONTE CARLO SIMULATIONS

In the previous section we have outlined the basic equations of the DPD scheme. These
equations lead to a Hamiltonian (Eq. (6)). Given the fact that we are simulating a Hamiltonian
system, we could use Monte Carlo techniques to simulate this system.

3.1. Phase Equilibria Calculations

For many applications it is important to have a detailed knowledge of the phase diagram
of a given model. It is in principle straightforward to obtain such information from a DPD
simulation by simulating the system at conditions, where phase separation is expected, and
observe the formation of these phases [7]. These types of simulations, however, are very
time consuming. If the interfacial tension between the two phases is very low it may require
very long simulations to compute such a phase diagram of a given model. Such types of
problems can be solved if the DPD technique is combined with, for example, the Gibbs
ensemble technique to compute phase equilibria.

3.1.1. Gibbs ensemble technique.Panagiotopoulos [8] derived a new scheme to study
phase equilibria usually called the Gibbs ensemble technique. The idea behind this scheme
is to simulate two boxes which (together) form a NVT ensemble. However, the two boxes
can exchange particles and volume. A Monte Carlo scheme is used to ensure that these
two boxes are in thermodynamic equilibrium. If one performs a simulation in a two phase
region at equilibrium one box will contain one phase while the other box will contain the
other phase. Because the two phases are in separate boxes there is no interface in these
simulations, and the coexisting density follows directly from the density in the two boxes.
In a DPD simulation the formation of this interface makes such a simulation expensive (both
in simulation time and number of particles). Details on the Gibbs ensemble simulation are
given in the Appendix.

3.1.2. Results. We have computed the phase diagram of the model studied by Groot and
Warren [9]. The model of Groot and Warren is an example of liquid–liquid phase separation.
Details on the parameters of the model and the simulations are given in the Appendix. The
results of the DPD simulations and the Gibbs ensemble simulations are compared in Fig. 1.

As can be seen from the graph, the results of both simulation methods are in good
agreement. Such an agreement can be expected from theoretical arguments and, therefore,
is a very good test for the methods that these two completely independent techniques give
the same results.

It is interesting to compare the efficiency of the two methods. The Gibbs ensemble
simulations were performed withN = 1296 and 384 particles. We did not observe significant
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FIG. 1. Phase diagram as calculated with DPD and Gibbs ensemble.ρ1 is the concentration of one fluid in
the two phases.

finite-size effects, which is in agreement with other studies [10–13]. Therefore, we could
obtain the phase diagram shown in Fig. 1 withN = 384 particles only. The calculation of
one coexisting point required approximately 30 min on an IBM workstation. For the DPD
simulations 6000 particles were required and the total simulation time was 4.5 h on the
same computer. Close to the critical point(Tc = 0.60) it was impossible to obtain a stable
planar interface for the given system size, with the DPD method because the interfacial
tension was too low. With the Gibbs ensemble we could obtain results much closer to the
critical point.

From these simulations it is clear that DPD and Gibbs ensemble simulations lead to the
same results and both methods can be used, depending on what is the quantity of interest.
Obviously the Gibbs ensemble technique is much more efficient for the study of phase
equilibria since the equilibrium is reached faster and with less particles.

4. FREE ENERGY CALCULATIONS

In applications one would like to map the DPD parameters to real systems. Groot and
Warren [9] have shown that for polymers one can use a thermodynamic route and map
the DPD parameters on Flory–Huggins parameters. Therefore, it is important to compute
thermodynamic quantities of a given DPD model. With standard DPD techniques, however,
it is difficult to compute quantities related to the free energy. It would require many simula-
tions to determine the complete equation of state. Also, for this problem the DPD technique
can be combined with Monte Carlo techniques to determine the free energy from a single
simulation, such as the Widom test particle method [14] or the overlapping distribution
method [15].

In this work we are interested in computing the chemical potential of the polymers that
are used by Groot and Warren [9]. For chain molecules one can compute the chemical
potential using configurational-bias Monte Carlo techniques [16–19].
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4.1. Configurational-Bias Monte Carlo

The configurational-bias Monte Carlo (CBMC) technique is based on an algorithm devel-
oped by Rosenbluth and Rosenbluth [16, 19, 20] for lattice models that has been extended
to continuum models [16–19].

We consider a solvent of DPD particles in which we compute the chemical potential of a
chain with lengthl . The beads of the chain are connected to each other with a spring which
leads to a bond potential given by

Ubond(r ) = −1

2
Cr2 + UC(r ), (7)

in which C is the spring constant chosen 2.0 in this study, andUC(r ) is the potential that
gives rise to the conservative forceFC (see Eq. (3)). The method to compute the free energy
consists of the following steps:

1. At a random trial position, the first DPD particle of the chain is inserted and the
Rosenbluth weight (w1 = exp(−βu1)) calculated, whereu1 is the energy of the inserted
particle andβ = 1/kBT .

2. For all next particlesi = 2, 3, . . . ., l in the chain,k positions on a sphere with radius
1 are generated. These vectors are multiplied by a random chain length calculated from the
distribution given byr 2 exp(−Ubond). From thesek positions we select one, sayn, with a
probability proportional to its Rosenbluth weight:

pi (n) = exp(−βui (n))

wi
, (8)

whereui (n) is the energy of thenth trial position and

wi =
k∑

j =1

exp(−βui ( j )), (9)

whereui ( j ) is the potential energy with the other particles in the system (excluding the
bond potential).

3. Step 2 is repeated until the entire chain is grown. The total Rosenbluth factor of the
chain is the product of the Rosenbluth factors of each segment divided by the total number
of segments:

W = w1

l∏
j =2

w j

k
. (10)

The excess chemical potential is calculated from

µex = µtest− µ0 = −kBT ln〈W〉 − (−kBT ln〈W0〉) , (11)

where〈W〉 is the mean Rosenbluth weight (resulting in a chemical potentialµtest), and〈W0〉
is the mean Rosenbluth weight of one isolated chain of lengthl (resulting in a chemical
potentialµ0). The chemical potential of one isolated chain (µ0) has to be calculated from
a separate simulation of a chain without the solvent. Since no solvent has to be calculated
this is not very time consuming. It is important to note that this chemical potential does
not correspond to the ideal gas chemical potential, since in the generation of the trial
configurations in the CBMC scheme the bond potential is not considered in the Rosenbluth
factor [15].
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FIG. 2. Chemical potential vs chain length at various densities. Forρ = 0.5, 0.75, and 1.0, βµtest is shown,
and for the isolated chainβµ0 is shown.

4.1.1. Results. The chemical potential was computed as a function of chain length at
various densities. Simulation details are given in the Appendix. The results are shown in
Fig. 2. As can be seen the chemical potential grows linear with chain length. To calculate
the error in these computations the block average method described by Flyvbjerg and
Petersen [21] is used. Results from these computations are depicted in Fig. 3. For low
densities the error grows slowly with chain length, but for the higher densities an erratic
behavior in the error is observed. This larger error at the highest density might be the
explanation of the small wiggles that can be seen in Fig. 2 forρ = 1.0. In addition, this
erratic behavior may indicate that the sampling scheme is not adequate, as has been observed
before [22]. To investigate this further we use the overlapping distribution method.

FIG. 3. Error vs chain length at various densities.
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FIG. 4. Overlapping distribution for a chain of length 10 atρ = 1.0.

4.1.2. Overlapping distribution method.As explained above, the chemical potential of
a chain can be calculated by adding this “ghost” chain into the simulation box. However,
the same thing can be achieved by removing a real chain from the simulation box. The
principle of the overlapping distribution method is to calculate a histogram of potential
energy change when adding or removing the chain. If these two distributions overlap a
reliable estimate of the chemical potential can be obtained. If these distributions do not
overlap sampling problems may be expected [23].

The potential energy change of the chain addition is calculated with the method described
in the previous section. The potential energy change of the real chain is calculated in a similar
way. Again a number of trial orientations are chosen, but this time notk butk−1. In addition
to these(k−1) trial orientations also the real orientation is used to calculate the Rosenbluth
weight. For the real chain energy we have to perform a separate simulation for each chain
length, while for the “ghost” chain method only a single simulation is required for the
longest chain length, and store the results while growing the chain.

By constructing the following functions we can calculated the excess chemical potential1

f (− ln(W)) = ln(p0(− ln(W))) + 1

2
ln(W)

g(− ln(W)) = ln(p1(− ln(W))) − 1

2
ln(W).

(12)

In which p0 is the probability density of− ln(W) in the case of adding a chain andp1 of
removing one. The chemical potential is found by subtracting these two functions,

βµtest = g(− ln(W)) − f (− ln(W)). (13)

In Fig. 4 the functionsf , g andg− f are shown as well as the chemical potential as
calculated with the Rosenbluth test particle insertion method (µtest), Eq. (11). As can be

1 In the article of Mooij and Frenkel [23] the functionsf andg contain some typographic errors and should
read as Eq. (12).
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FIG. 5. Overlapping distribution for a chain of length 50 atρ = 1.0.

seen the overlap between the two is good for a chain with 10 beads. For a longer chain
(l = 50; see Fig. 5) the overlap is smaller, only the tails of the distributions are overlapping.
The error in these tails is larger then forl = 10, so there is also a larger error in the estimation
of the excess chemical potential. But these results indicate that even forl = 50 the original
Rosenbluth scheme still gives a reasonable result.

It is instructive to compare these results with the calculation of the chemical potential
of a chain of Lennard-Jones beads in a solvent of Lennard-Jones particles [17]. For these
Lennard-Jones chains a reliable chemical potential could be obtained for chain lengths up
to 10 or 20, depending on the density of the solvent. Here we could obtain a result for the
chemical potential for much larger chains at acceptable densities. This is because of the
relative softness of the potential.

5. CONCLUDING REMARKS

In this paper a combination of DPD and Monte Carlo techniques has been explored. We
have shown that in the case of phase equilibria of a liquid–liquid mixture this combination
gives a much more efficient sampling scheme. In addition, with this combined method
one can obtain data on the coexistence properties much closer to the critical point. Another
example concerns the calculation of the free energy of a polymer in solution. We have shown
that at acceptable densities the excess chemical potential can be calculated for relatively
long chains.

APPENDIX

In this Appendix simulation details are given for the DPD simulations, the Gibbs ensemble
simulations, and the free energy calculations.
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TABLE I

The DPD Model Parameters

Parameter ai j (i 6= j ) ai j (i = j ) rc γ δt

Value 30.0 25.0 1.0 3.0 0.06

DPD Simulations

The DPD simulations were performed with parameters used by Groot and Warren [9].
They are displayed in Table I. The total number of particles was 6000 and the box size
20× 10× 10. This rectangular shape was chosen to stabilize a planar interface. To obtain
a density profile in the simulation box, 15000 time steps were needed to form the interface.
Then the density was computed every 50 steps over 50000 time steps.

Gibbs Ensemble Simulations

The Gibbs ensemble simulations were performed with the potential that gives rise to the
conservative force in the DPD scheme. A general description of this technique can be found
in [8, 15]. The simulations were performed in cycles. In every cycle, we select one of the
following trial moves at random:

1. Displacement. A randomly chosen particle is given a random displacement. The max-
imum displacement is chosen such that 50% of the displacements are accepted.

2. Particle exchange. A component is selected at random. It is selected at random to
transfer a particle of this component from box A to box B or vice versa. Finally, a particle in
the correct box and of the correct component is chosen and transfered to a random position
in the other box.

3. Identity change. At random, it is chosen to exchange a particle of component 1 in box
A with a particle of component 2 in box B or vice versa. The acceptance/rejection rule of
this trial move can be found in [24].

No change of volume was attempted because the mixture is symmetric. The number of
trial moves in one cycle is equal to the number of particles. The moves were selected in
such a way that on average 50% displacements, 40% exchanges, and 10% identity switches
were performed. To equilibrate the two boxes in the simulation 500 cycles were used. Then
the density of the two boxes was computed every 100 cycles for 20000 steps.

Free Energy Calculations

For the free energy calculations the parameters used by Groot and Warren [9] were chosen
(see Table I, andaii = 25.0). The box size for these simulations was 10× 10× 10 and the
number of particles was varied between 500 and 1000. To equilibrate the system 1000
time steps were used. The number of trial orientations was 10. The Rosenbluth factor was
computed every time step over 5× 104 time steps. The error was calculated using the block
average method.

The overlap distributions were computed every 10 time steps over 2× 104 time steps.
To calculate the error in the distribution 10 distributions were calculated, leading to a total
simulations time of 2× 105 time steps.
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